Applying GIS and Machine Learning Methods to Twitter Data for Multiscale Surveillance of Influenza
نویسندگان
چکیده
Traditional methods for monitoring influenza are haphazard and lack fine-grained details regarding the spatial and temporal dynamics of outbreaks. Twitter gives researchers and public health officials an opportunity to examine the spread of influenza in real-time and at multiple geographical scales. In this paper, we introduce an improved framework for monitoring influenza outbreaks using the social media platform Twitter. Relying upon techniques from geographic information science (GIS) and data mining, Twitter messages were collected, filtered, and analyzed for the thirty most populated cities in the United States during the 2013-2014 flu season. The results of this procedure are compared with national, regional, and local flu outbreak reports, revealing a statistically significant correlation between the two data sources. The main contribution of this paper is to introduce a comprehensive data mining process that enhances previous attempts to accurately identify tweets related to influenza. Additionally, geographical information systems allow us to target, filter, and normalize Twitter messages.
منابع مشابه
A Review of Influenza Surveillance System in the Islamic Republic of Iran: History, Structures and Processes
Background and Objectives: Iran, like most other countries in the world, is always threatened with global epidemics and pandemics of influenza. The purpose of this study was to review the influenza surveillance system in Iran. Methods: Data of this study were obtained from the surveillance system of the Center for Communicable Disease Control, the review of records, documents, books and pub...
متن کاملA High-Performance Model based on Ensembles for Twitter Sentiment Classification
Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...
متن کاملEvaluating machine learning methods and satellite images to estimate combined climatic indices
The reflections recorded on satellite images have been affected by various environmental factors. In these images, some of these factors are combined with other environmental factors that cannot be distinguished. Therefore, it seems wise to model these environmental phenomena in the form of hybrid indicators. In this regard, satellite imagery and machine learning methods can play a unique role ...
متن کاملForecasting Stock Price Movements Based on Opinion Mining and Sentiment Analysis: An Application of Support Vector Machine and Twitter Data
Today, social networks are fast and dynamic communication intermediaries that are a vital business tool. This study aims at examining the views of those involved with Facebook stocks so that we can summarize their views to predict the general behavior of this stock and collectively consider possible Facebook stock price movements, and create a more accurate pattern compared to previous patterns...
متن کاملDetection of Twitter Users' Attitudes about Flu Vaccine based on the Content and Sentiment Analysis of the Sent Tweets
Introduction: The influenza vaccine is one of the controversial challenges in today's societies. Considering the importance of using the flu vaccine in preventing the spread of influenza virus, the Twitter network, as a rich source of data, provides suitable conditions for research in this field to examine the attitudes of different people about this vaccine. The results in one hand will help h...
متن کامل